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Introduction

Molecular motions in fluids are of long-standing interest to physicists, chemists, materials
engineers, and biologists since the dynamics bear a direct relationship to the physical and
rheological properties underlying many applications. A first-principles approach to under-
standing material properties would address how the chemical structure determines the forces
between molecules, and in turn how these forces govern the molecular motions. Fluctuation-
dissipation theory then provides a connection between theoretical models and experimental
observables. The latter usually involve the decay of stress, polarization, or other measurable
quantities, which are the macroscopic manifestation of the molecular diffusions, reorienta-
tions, and conformational transitions returning the perturbed system to equilibrium.
The relaxation1 of even simple van der Waals fluids remains a continuing field of study.

Analysis of liquid motions is simplest for non-interacting species, and solutions were obtained
in the early twentieth century for translational Brownian diffusion2 [1] and rotational diffu-
sion [2] in dilute solution. For viscous liquids of sufficient density that molecules exert a
reciprocal influence, mutual interactions can dominate the behavior – neighboring species
must make small adjustments in position in order for a given molecule to change configura-
tion. The behavior deviates from thermally excited transitions between potential wells, and
theoretical efforts to describe the many-body dynamics remain largely at the model-building
stage. It is in the study of such complex correlated dynamics that polymers in general, but
rubber in particular, can be most useful – the former because of their diverse properties,
unique phenomena, and facile supercooling;3 the latter because only rubber among polymers
exists in a state of structural and mechanical equilibrium. For this reason, rubber is the most
fundamentally interesting polymeric material. Its unique properties have also led to wide
application in industry, the military, and for consumer products (world consumption of
natural and synthetic rubber exceeded 23 million tons in 2008 [3]), which in turn has spurred
further research.

1 The term “relaxation” is used to describe both the experimental data (e.g., relaxation spectra) and the underlying
motions (e.g., segmental relaxation times).

2 Thermally driven random movement of molecules is known as Brownian motion, after the 1827 Scottish botanist
Robert Brown, who used a microscope to observe the irregular paths followed by pollen particles suspended in water.
Initially ascribed to the particles being alive, the correct mechanism –molecular collisions – was identified by Einstein
in 1905. Living cells also exhibit migration, but the motion is well beyond that due to thermal fluctuations.

3 Traditionally “supercooling” referred to quenching below the melting point to a metastable liquid state; however,
many polymers are incapable of crystallization due to irregularity of their chemical repeat units and thus have no
melting temperature. Nevertheless, reducing their temperature towards the glass transition is still regarded as
supercooling.
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1.1 Viscoelasticity and high elasticity in polymers

The distinctive feature of polymers is the enormous size of the constituent molecules (“macro-
molecules”), which can be two orders of magnitude larger than the distance between seg-
ments. This is quite different from ordinary liquids, which, unless near a critical point or the
glass transition, have only one characteristic length scale, the intermolecular separation, equal
to a few Angstroms. It is the size and consequent large aspect ratio of chain molecules that give
polymer melts4 (that is, amorphous polymers above the glass-transition temperature Tg) their
special properties, in particular high elasticity and viscoelasticity.

High elasticity (rubber elasticity) refers to the ability of flexible-chain polymers to recover
from large strains, a property unique to chain molecules. Experiments have shown that high
molecular weight, uncrosslinked polymers exhibit recoverable strains (stretched length
divided by length after recovery) of as much as 10 [4,5]. Entanglements give rise to a transient
network that responds to applied forces through conformational changes of the polymer
backbone (e.g., for extensional strains gauche rotamers convert to the more extended trans
form). The rotations of backbone segments are highly correlated (intramolecular cooperativ-
ity) to avoid large displacements of the chain. Upon removal of the external force, the material
recovers some of its original dimensions since the conformational transitions are reversible.
High elastic strains are attained in polymeric liquids only if the strain rate is large relative to
the molecular response time; flow, which changes the relative position of the molecules, leads
to unrecovered strain (“set”). A network of chemically bonded chains, however, retains it
shape, with any permanent set the result of defects, chain scission, or mechanically labile
network junctions. As implied by the name, permanent set is distinct from recoverable strain
that may be retarded due to the viscoelastic nature of polymers. This behavior is discussed in
Chapter 4.

A measure of the hypothetical maximum extension of a polymer chain is the ratio of its fully
extended length to its mean length. From eqn. (1.22) below, this quantity is proportional to
the square root of the number of backbone bonds. For a typical polymer having a molecular
weight � 105 g/mol (� 103 repeat units), this extension is on the order of 100. Of course,
reversible strains this large are unattainable for real networks, which are limited by defects
and finite extensibility.

Viscoelasticity describes a time-varying reaction to a transient perturbation in an unchang-
ing material; equivalently, the perturbation could be dynamic, resulting in a frequency-
dependent response. The requirement is that the response changes with time even though
the material does not. Viscoelasticity includes mechanical properties such as stress relaxation
and the dynamic modulus, as well as experimental quantities involving related molecular
motions, such as dielectric polarization and the quasi-elastic scattering of light, X-rays, or
neutrons. The term itself implies a second, equivalent definition: energy is both dissipated and
stored during deformation of a viscoelastic material; that is, the material response has viscous
and elastic components.

Non-polymeric materials exhibit viscoelastic effects, a prominent example being super-
cooled small-molecule liquids [6,7]. Viscoelasticity is manifested in metals as creep under

4
“Melt” is commonly used for high molecular weight, amorphous polymers above Tg, with the term liquid reserved

for unentangled polymers; this distinction reflects the fact that entanglements confer solid-like properties over a
limited frequency range. However, the terminology is confusing insofar as “melt” implies the loss of an ordered
structure, such as found in crystals. Since near Tg the viscoelastic behaviors of molecular liquids and polymer melts
are indistinguishable, the terms are used interchangeably herein.
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sustained loading [8] and becomes significant at temperatures above about 0.5 times their
melting point [9]. This high-temperature creep is due to changes in the microstructure of the
metal, but even well below the melting point metals are not entirely elastic. For example, long
term creep in the Cu-Be wires of a torsional balance introduced small errors into measure-
ments of the gravitational constant [10]. Strictly speaking, the behavior of metals is not truly
viscoelastic, since the changing response to a load is usually caused by changes in the material
itself, e.g., its dislocation structure or grain size.
Polymers are the prototypical viscoelastic materials, exhibiting large rate dependences at

almost all temperatures. The normal forces accompanying shear flow of polymers is another
consequence of their viscoelasticity (although normal stresses are not unique to viscoelastic
fluids). Viscoelasticity is a consequence of the diverse range of molecular motions in polymers,
which means that for any applied stress or strain, some relaxation modes are moving on the
timescale of the perturbation and thereby dissipating energy. This gives rise to a peak in the
out-of-phase, or loss, component of the dynamic response, at a frequency equal to the frequency
of the underlying molecular motions. Other modes, moving relatively fast, respond either
elastically or, for the entire molecule in the absence of crosslinking, as flow. Some molecular
motions may have very long time constants, so as to be “frozen” or unresponsive, on the
timescale of the perturbation; an example would be conformational transitions of the polymer
backbone below Tg. In rheology two parameters are used to describe the competition between
the timescale of the imposed perturbation and the time characterizing the material response.
The Deborah number5 is the ratio of the response time to the experimental timescale. A large
Deborah numbermeans the fluid responds in amore solid-like fashion. The relatedWeissenberg
number6 is the ratio of the material relaxation time to the process time during flow, and is used
to characterize the amount of molecular orientation induced by the flow.
In Figure 1.1 the in-phase and out-of-phase components of the dynamic modulus are shown

for high molecular weight 1,4-polyisoprene (PI) subjected to a periodic shear strain [11]. The
energy stored per cycle is proportional to the storage modulus, Ǵ , and the energy dissipated
to the loss modulus, Ǵ´. Energy storage and loss are both expected whenever relaxation
occurs, although the two quantities are not independent. According to the Kramers–Kronig
relation [12], based on the principle of causality (the time order of cause and effect)Z 1

0
G�ðoÞ sinot

o
do ¼

Z 1

0
G��ðoÞ cosot

o
do ¼ p

2
GðtÞ ð1:1Þ

where G(t) is the stress relaxation modulus measured in a transient experiment and o is the
circular frequency, equal to 2p times n, the frequency in Hertz. Although valid for all linear
responses, eqn (1.1) is difficult to apply because it requires knowledge of the modulus function
over the entire frequency range. There are various approximations to the Kramers–Kronig
relation [13], for example

G��ðoÞ � p
2
dG�ðoÞ
d lno

ð1:2Þ

5 The term comes from the biblical quote by the prophetess Deborah “The mountains melted from before the Lord”
(Judges 5:5, KJV).

6 Named for the early twentieth century Austrian rheologist Karl Weissenberg.
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The corresponding equation for the dielectric loss is sometimes used to circumvent the
masking of loss peaks by ionic conductivity, since the latter does not contribute to the in-
phase response [14].

The frequency ofmolecularmotions is characterized by a time constant or relaxation time.The
classical definition is the time required for the perturbation to be reduced by a factor of e (�2.72).
This implies exponential decay (or Debye relaxation in the frequency domain), which is valid for
relaxation that is homogeneous and proceeds at a rate proportional to the amount remaining to
relax. For example, after imposition of a strain, the stress, s(t), relaxes according to

ds
dt

¼ �k0sðtÞ ð1:3Þ

sðtÞ ¼ s0 expð�k0tÞ ð1:4Þ
where s0 is the initial stress and k0 the rate constant (equal to the reciprocal of the relaxation
time). Exponential relaxation rarely describes the intermolecularly cooperative motions in
dense fluids. Another characteristic timescale is the period required for complete cessation of
the decay; however, this is usually too long to be practical and relies on judgment of when
equilibrium has been reestablished. (Since variables still fluctuate while in thermal equilib-
rium, an indicator that equilibrium has been attained is when the change of a variable with
time becomes equal to its rate of change due only to equilibrium fluctuations [15].)

An absorption peak in the loss modulus (Figure 1.1) or dielectric loss, reflecting the
conversion of mechanical or electrical energy to heat, can be used to define a model-indepen-
dent, most probable relaxation time as the reciprocal of the peak frequency, tmax = o–1. If
the peak in the spectrum is symmetric, tmax is also the mean relaxation time. However,
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Figure 1.1 Dynamic storage and loss modulus of polyisoprene (Mw = 500 kg/mol). The symbols denote
the different measurement temperatures, with the isotherms shifted to obtain the master curve at the
indicated reference temperature. The spectra exhibit both aspects of viscoelasticity – the modulus varies
with frequency and the response has both elastic and dissipative components. Data from ref. [11].
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relaxation functions are often asymmetrically broadened. The asymmetry can arise due to
heterogeneous relaxation, in which the response is a weighted summation of simple exponen-
tial decays

GðtÞ �
Z 1

�1
HðtÞe�t=tdð lntÞ ð1:5Þ

with H(t) the distribution function. Alternatively, the relaxing species may just decay in an
inherently non-exponential fashion, in which an empirical equation or a model is used to
describe the peak shape. An H(t) can always be found that will fit the data, with the mean
relaxation time given by the weighted sum

hti ¼
R1
0 tHðtÞR1
0 HðtÞ dt ð1:6Þ

Since molecular motions in polymers encompass such a broad frequency range, a logarithmic
timescale is more useful; that is, the distribution is expressed in terms of lnt ðd lnt ¼ t�1dtÞ
[16]. Heterogeneous and homogeneous relaxation scenarios are depicted in Figure 1.2 [17].
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Figure 1.2 Heterogeneous and homogeneous dynamics leading to non-exponential relaxation. The
former corresponds to a distribution of exponential relaxation times and the latter to inherently non-
exponential relaxation function. The spatially distributed responses are averaged to yield the observed
decay function, which is indistinguishable for the two scenarios. Reproduced from ref. [17] with
permission.
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A common form of asymmetry of relaxation peaks is characteristic skewing toward higher
frequencies (“stretched exponential decay”) that conforms in the time domain to the Kohl-
rausch function7 [18,19]

GðtÞ ¼ G0 exp½�ðt=tK ÞbK � ð1:7Þ
whereG0 is a constant and 0 < bK � 1. This equation is obtained by making the rate constant
in eqn (1.3) time dependent: k0ðtÞ � tbK�1. The one-sided Fourier transform of eqn (1.7) gives
the Kohlrausch function in the frequency domain and, while written in terms of the mechani-
cal modulus, there are corresponding equations for dielectric relaxation, quasi-elastic scatter-
ing, etc. If eqn (1.7) arises from a superposition of exponential relaxation functions

GðtÞ ¼
Z 1

0
HðtÞ expð�t=tÞdt ð1:8Þ

the distribution of relaxation times is given by [20]

HK ðtÞ ¼ � 1
pt

X1
k¼0

ð�1Þk
k!

sinðpbkÞGðbk þ 1Þtbk ð1:9Þ

where ˆ is the gamma function.8 This distribution function includes several decades of
relaxation times shorter than the main (peak) relaxation time. Equation (1.9) must be
evaluated numerically, although a good approximation is

HK ðtÞ ffi bK
2pð1� bK Þt2

� �1
2 bKt

tK

� � bK
2ð1�bK Þ

exp �ð1� bK Þ
bKt
tK

� � bK
ð1�bK Þ

" #
ð1:10Þ

The Kohlrausch relaxation time �K is related to the mean value as

hti ¼ tK
bK

Gðb�1
K Þ ð1:11Þ

Fitting the higher-frequency dispersion in Figure 1.1 to eqn (1.7) gives bK = 0.52, with the full
width at half-maximum (FWHM) = 2.11 decades. The lower limit for a dispersion is the
breadth of a Debye peak (bK is unity), FWHM = 1.144 decades. The various relaxation times
for the segmental peak in Figure 1.1 are tK = 0.25 ms, tmax = 0.33 ms, and h�i = 0.46 ms; this
rank ordering of magnitudes

tK � tmax � hti
is general and not specific to any particular value of bK.

Exponential decay usually describes thermally excited single molecule transitions, expected
to conform to an Arrhenius temperature dependence

t ¼ t1 expð�Ea=RTÞ ð1:12Þ

7 This function is also named after Williams and Watts, who derived it independently [19].
8 The gamma function GðxÞ ¼ R1

0
e�uux�1du. If x is a positive integer, GðxÞ ¼ ðx � 1Þ!
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with a constant activation enthalpy9 Ea (R is the gas constant). A heuristic argument, referred
to as the compensation rule, requires that the prefactor, t1, in eqn (1.12) be related to Ea

according to [21]

t1 / expð�EaÞ þ constant ð1:13Þ
If correct, a distribution of exponential decays would be invalid for many observed relaxation
phenomena. However, non-exponential relaxation is rarely associated with Arrhenius behav-
ior. If all molecular motions contributing to the response have the same temperature depen-
dence, temperature alters only the timescale of the response and the material is
thermorheologically simple; that is, the behavior conforms to the time–temperature superpo-
sition principle. This aspect of viscoelastic behavior is addressed in detail in Chapter 6.

1.2 Modes of motion

There are various length scales in polymers, in addition to the intersegment or intermolecular
distance in common with molecular liquids: (i) the Rouse length scale (� couple of nm), which
refers to the shortest distance over which the separation of chain segments has a Gaussian
distribution; (ii) the entanglement distance (ca. 3 to 8 nm), referring to the effective distance a
chain moves transversely to its contour before experiencing topological constraints due to the
uncrossability of the chains. It is these entanglement constraints that confer high elasticity to
uncrosslinked rubber; and (iii) the molecular size per se (� 50 nm). Since the conformational
arrangement of polymer chains exhibits a dynamic equilibrium and the lengths of different
chains may not be the same (molecular weight polydispersity), the macromolecular size is
expressly defined by moments. For linear chains the mean square end-to-end distance, hr2i, is
an obvious measure of size, while for branched or cyclic chains the distribution of segments
around the mass center is more meaningful; thus, the mean square radius of gyration is
proportional to the mean square distance between each of the n backbone atoms.

hR2
gi ¼

1
2n2

X
ðri � rjÞ2 ð1:14Þ

For freely jointed chains or for real linear polymers under Theta conditions,10 hr2i ¼ 6R2
g . The

molecular size of polymers has an especially significant effect on their rheological properties.
When crosslinked, the primary chain length becomes irrelevant, aside from a small influence
on network properties (e.g., strength and hysteresis) affected by chain ends.
These length scales refer to the structure of the material. However, in condensed matter

including polymers, molecules and segments rearrange at different rates, giving rise to hetero-
geneous dynamics and thus dynamic length scales. Some of the dynamic properties unique to
polymers are manifested in the glassy or semicrystalline states, but they are most apparent in
amorphous polymers above their glass-transition temperature. It is these conditions that
define a “rubber,” which refers to an amorphous, flexible chain, high polymer11 above Tg.
(An elastomer is a rubber that has been chemically crosslinked.) If the polymer backbone lacks

9 In the chemical literature Ea is referred to as an activation energy but enthalpy is the more correct term for an
isobaric process, given the potential for PV work.

10 Chains in solution under Theta conditions have the same configuration as in the equilibrium melt state.
11 The term “high polymer” implies a molecular weight sufficiently large that the chain ends have no effect on

properties.
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flexibility, it cannot undergo the conformational transitions required for high elasticity.
A metric of chain flexibility is the persistence length, lp, describing the distance over which
bond orientations become uncorrelated. lp is equal to the area under the correlation function
describing the orientational correlation of backbone bonds

CðrÞ ¼ hu~ð0Þ�u~ðrÞi ð1:15Þ

where u~ is a unit vector parallel to the bond, r runs along the polymer contour, and the
brackets imply the scalar product averaged over all chains. For a completely flexible polymer
lp equals one bond length, and for a completely rigid rod it is equal to the chain length.
Another way to distinguish flexible chains from rigid-rod polymers is by their crystallization
behavior [22–24]. Without the ability to conformationally rearrange, rigid rods maximize their
packing by aligning in parallel fashion to form extended-chain crystals. To minimize the loss of
orientational entropy, however, chains with sufficient flexibility will back-fold during crystal-
lization, and this absence of extended chain crystals can serve as a defining characteristic of
flexible-chain polymers. Based on a very approximate lattice model, Flory concluded that 0.63
was the fraction of bent (gauche) bonds necessary for a chain to crystallize with back-folding
and thus be considered a flexible macromolecule [22]. High-speed spinning and related technol-
ogies are routes to achieve extended-chain crystallization offlexible-chain polymers by reducing
the transient concentration of gauche conformers during processing [25,26,27]. Extended-chain
crystals form stronger, more dimensionally stable fibers because the back-folds are defects.
This Flory approach to chain flexibility leads to another way to contrast flexible and rigid
chains – from the size of the chain relative to the size of a completely flexible chain having the
same number of repeat units. This characteristic ratio, Cn, is defined in eqn (1.24) below.

Another classification of dynamic properties is between those that are unaffected by chain
length, and thus common to materials composed of small molecules and macromolecules, and
molecular motions that are unique to polymers. The former are the more local modes,
including the glass transition, since one cannot distinguish a polymer from a molecular liquid
using only measurements around Tg. As discussed below the dependence of Tg on molecular
weight is due to the presence of chain ends; this dependence is not a direct consequence of the
long-chain character of the molecule. The chain ends in a high polymer are too sparse to affect
Tg and other properties.

The broad range of length scales in polymers leads to a diversity of their dynamics:
vibrations, the Boson peak, the nearly constant loss, secondary relaxations including
both side group motions and the Johari–Goldstein process, structural relaxation (the glass
transition), the Rouses modes, and the entangled dynamics. Only the last two are unique
to polymers. In Figure 1.3 various dynamics are evident in the dielectric loss spectrum of
1,4-polybutadiene (PBD) [28]. Temperature is used as the abscissa in order that the processes,
which encompass more than 12 decades of frequency, can be viewed together. In general we
expect slower dynamic processes to be progressively less sensitive to chemical structure, since
motion over longer length scales averages out the structural details.

1.2.1 Vibrations

Beginning around 10–14 s and sensibly independent of temperature, the fastest motions of
atoms (i.e. neglecting electronic excitations) are vibrations, which change the instantaneous
bond angles and lengths and occur even in the glassy state. These are not specific to polymers
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but do depend on the atoms and chemical structure; thus, vibrational spectroscopy is useful
for identification of a material, including the polymer species and any additives. Related
to these oscillations of individual moieties are the phonons. A universal feature of glassy and
crystalline solids, phonon motion consists of lattice vibrations; i.e. collective modes in the
form of extended plane waves. The term itself comes from the fact that long-wavelength
phonons underlie the propagation of sound in solids. Phonon excitations transpire at very
high frequencies, ca. 1012Hz. The earliest model of phonons was due to Einstein, who assumed
all vibrational frequencies to be equally probable [29]. This leads to incorrect predictions
for the heat capacity of solids. A more accurate description of phonon motion is the
Debye model, according to which elastic solids have a density of states g(o) (number of
states per unit frequency) proportional to o2 for o less than a characteristic value known
as the Debye frequency, oD � 1012 Hz. For frequencies greater than oD, g(o) = 0 [29,30].
Notwithstanding its simplicity the Debye model remains the starting point for treating low-
temperature lattice vibrations. However, for disordered solids such as polymeric glasses,
scattering experiments reveal an additional vibrational contribution, in excess of the
Debye prediction. This excess g(o) is seen as a maximum in g(o)o2 at o � 1012 Hz [31].
This so-called Boson peak, not observed in crystals, has a shape that is independent of
chemical structure [32]. An example is shown in Figure 1.4 [33]. The origin of the Boson
peak is much investigated, with the phenomenon of general interest because of the possibility
that the Boson intensity correlates with properties of the liquid state including the glass
transition [34–36].
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Figure 1.3 Dielectric loss of 1,4-polybutadiene measured as a function of temperature at 100 Hz. The
different relaxation mechanisms appear as peaks, while the nearly constant loss and ionic conductivity
are manifested as changes in slope. Data from ref. [28]
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1.2.2 Nearly constant loss

Spectroscopic measurements on polymers such as PI [37], PBD [28,38], polyisobutylene (PIB)
[39], polystyrene (PS) [39], and polymethylmethacrylate (PMMA) [40], as well as ions [41–45]
and small molecules [46–49], reveal that the dynamics over a range of frequencies can be
described by a slowly decreasing function of frequency, varying as o–º where l is a positive
number close to zero. This is illustrated in light-scattering spectra for PIB both below and
above Tg (Figure 1.5 [39]) and in dielectric spectroscopy on two PBDs, an oligomer and a
higher molecular weight sample (Figure 1.6 [38]). Given the very weak frequency dependence,
the process is referred to as the nearly constant loss (NCL). The frequency regime of the NCL
is much higher than structural relaxation, so the response represents motion of species (ions,
molecules, or chain segments) within the near-neighbor “cage.” This cage confinement is
responsible for the weak energy dissipation connoted by the term NCL.

Since the local liquid structure loosens with increasing temperature, the magnitude of the
NCL increases with T (Figure 1.7); however, at higher T its temporal extent is reduced by
encroachment on the low-frequency side from structural relaxation. For this reason the NCL is
only observed at low temperatures and high frequencies. Thus, while the NCL should be
ubiquitous, its detection is limited to conditions where there is no overlap with the more
intense vibrational and reorientational contributions.

1.2.3 Secondary relaxations

Secondary relaxations are any of the myriad processes occurring at higher rates (or observed
at lower temperatures) than the structural relaxation underlying the glass transition. The
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Figure 1.4 Vibrational density of states from the anti-Stokes Raman spectrum of PMMA, as measured
(squares) and after division by n2 to make apparent the excess over the Debye theory. The spectrum is
invariant to physical aging or thermal history. Data from ref. [33].
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most facile means to observe secondary relaxation peaks is dielectric spectroscopy because of
its sensitivity and broad frequency range. Secondary relaxations are named using successive
Greek letters beginning with b; the glass transition is the a-process. In Figure 1.8 dielectric
spectra are shown for polycyclohexylmethacrylate, which has a complex structure and there-
fore multiple secondary processes. The relaxation times (inverse of peak frequency)
corresponding to each process are shown in an Arrhenius plot in Figure 1.9 [50]. Secondary
relaxations, found in small molecules as well as polymers, fall into two classes: the Johari–
Goldstein (JG) relaxation and higher-frequency motions. The latter are more trivial, in the
sense of being specific to a given material and generally having a limited effect on macroscopic,
physical properties. The higher-frequency secondary relaxations are due to motion of some,
but not all, atoms in the molecule or repeat unit. Examples include motion of a pendant group,
the chain ends, particular backbone atoms, or motion in the vicinity of crystal defects. Table
1.1 lists representative secondary relaxations for several polymers [51–59]. Secondary relaxa-
tions can usually only be resolved unambiguously from the primary a-process below Tg and
therefore are measured in the glassy state, where temperature variations only change the
thermal energy but not the structure of the material. For this reason secondary relaxations
exhibit an Arrhenius temperature dependence (eqn (1.12)). Activation energies are listed in
Table 1.1; Ea is on the order of 10 kBT (kB is Boltzmann’s constant).
Since below Tg a material is (by definition) out of equilibrium, properties of a glass such as

volume, enthalpy, and entropy all decrease toward their equilibrium values at a rate that
decreases with the extent of supercooling. This phenomenon, known as physical aging, also
causes changes in characteristics of secondary relaxations; moreover, the time evolution of
properties of the �-process in glasses reflects the structural aging dynamics. This means that
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Figure 1.5 Depolarized light scattering susceptibility spectra forPIB, showing aflat, weaklyT-dependent
response around 1 to 30GHz referred to as theNCL. The vibrational contribution to the spectra is evident
at higher frequencies. Data from ref. [39].
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the time constant for these changes provides a measure of the a-relaxation time, which below
Tg is too long for direct measurements. This is illustrated in Figure 1.10, showing a-relaxation
times for three materials directly measured above Tg and deduced for the glassy state from
changes of the secondary relaxation [60–62].

The JG relaxation is a special type of secondary motion, present in all amorphous or glass-
forming materials [63,64]. It is the slowest secondary process and thus can be referred to as the
�-relaxation. However, since the JG relaxation is sometimes masked by a strong glass-
transition peak, the next higher-frequency secondary process is sometimes inadvertently
labeled the �-peak. For small molecules the JG relaxation corresponds to rotation of the entire
molecule, although the angle of the reorientation is small, enabling the motion to proceed
independently from that of other molecules. The JG relaxation was first discovered in
dielectric measurements on rigid molecules [65], whose secondary dynamics cannot involve
intramolecular degrees of freedom; all atoms must participate in the process. For polymers
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Figure 1.6 Dielectric loss for an oligomeric (upper) and a higher molecular weight (lower) PBD. At the
higher temperatures the local segmental peak (a-relaxation) falls within the experimental frequency
range, with the Johari–Goldstein secondary process on the high frequency side. At lower temperatures
the NCL becomes evident. The measurable span of frequencies is limited at lower temperatures due to
the low loss and consequent need to measure using a high-resolution bridge, which has a frequency range
of only 2.3 decades. Data from ref. [38].
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Figure 1.8 Dielectric loss measured for PCHMA [50] at temperatures for which the weak �-peak falls in
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0
0

1

2

3

100

PI
OTP

PBD

PIB

salol
PMMA

Li20˙3B203

200
T [K]

lo
g 

N
C

L
 i
nt

en
si

ty
 [
a.

u.
]

300 400

Figure 1.7 Temperature variation of the nearly constant loss in the depolarized light scattering suscep-
tibility of PIB (diamonds, [39]) and PMMA (squares, [40]) and in the dielectric loss of PI (circles, [37])
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regime are also shown. Lines are linear fits to the semilogarithmic plots.
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the dynamics of the JG process can be more complicated, but nevertheless a JG relaxation is
usually present as the slowest secondary relaxation and one involving the entire repeat unit,
not only pendant groups or specific moieties. As an example of a JG relaxation in a polymer,
multidimensional NMR experiments on PMMA reveal that the �-relaxation involves 180	 flips
of the pendant carboxyl group; however, these are coupled to restricted rocking motion of the
chain backbone in order to avoid steric interference from other segments (Figure 1.11) [66,67].
The amplitude of this rocking motion increases with temperature, eventually becoming the
conformational transitions of the backbone that underlie the segmental dynamics and Tg.
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Figure 1.9 Relaxation times of PCHMA determined from the frequency of the maxima in the dielectric
loss for the local segmental and two secondary relaxations [50]. The respective temperature sensitivities
of the t increase with increasing timescale of process, becoming non-Arrhenius for the segmental
dynamics.

Table 1.1 Non JG secondary relaxations in selected polymers.

polymer motion
Ea

(kJ/mol) ref.

polyethylmethacrylate pendant alkyl group motion 7.1 51
polycarbonate carbonate motion 26 52

phenyl torsional motion 48
epoxy polymer epoxide end group motion 28 53
polyvinyl carbazole polar side group motion 29 54
nylon methylene segments rotation 31 55
polystyrene phenyl group rotation 38 56
styrene–acrylonitrile copolymer cyano group motion 39 57
polycyclohexylmethacrylate cyclohexyl flipping 45 58
polyoxymethylene backbone twisting about crystal defects 80 59
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Figure 1.11 Depiction of the motion of the side group in PMMA (a) Initial orientation of the pendant
group. (b) Rotation of side-group without backbone motion is sterically hindered by neighboring
segments. (c) Twisting about backbone allows the side group to be accommodated by the local empty
space; this in turn causes some readjustment of neighboring segments. (d) Counterrotation of the side
group returns it approximately to its original orientation but with some alterations due to the changes in
the orientations of the backbone and the neighboring segments. [66] (reproduced with permission)
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kinetics of changes in the secondary relaxation due to physical aging (half-filled symbols) for the
pharmaceutical telmisartan (triangles) [60], polymethylmethacrylate (circles) [61], and polyvinylethy-
lene (squares) [62]. The departures from Arrhenius behavior above Tg (indicated by the arrows) are
absent in the glassy state.
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Thus, the secondary relaxation in PMMA detected mainly as a side-group motion involves all
the atoms and is therefore a JG process.

At higher temperatures and longer times JG relaxations evolve into the primary structural
process [68], and for this reason the properties of JG relaxations are correlated with those of
the segmental dynamics. The JG relaxation mimics [69] or even serves as the precursor [70] to
the glass transition. Nuclear magnetic resonance (NMR) is the most unambiguous method to
distinguish whether a secondary process is a JG motion, although this can sometimes be
inferred from the greater sensitivity to pressure or volume changes in comparison to motions
involving only a portion of the molecule or repeat unit. The properties of JG relaxations are
considered in more detail in Chapter 2 dealing with the segmental dynamics of polymers.

1.2.4 Glass transition

The glass transition refers to structural relaxation occurring in the liquid as it vitrifies. Tg is
operationally defined as the pressure-dependent temperature at which the local segmental
dynamics of polymers (or correspondingly, the reorientation of small molecules or the transla-
tion of colloidal particles) transpires on a timescale significantly longer than the experimental
time.12 The local and intermediate range structural order of polymers, as revealed by X-ray
and neutron diffraction, changes negligibly as the material is taken from the melt to the glassy
state; it is for this reason that amorphous polymer glasses can be regarded as “frozen” liquids.
Segmental relaxation of polymers involves skeletal bond conformational transitions, with
motion over large length scales avoided by cooperative rotations of neighboring units along
the chain (intramolecular cooperativity) [71,72].

Although structural relaxation per se is not unique to polymers, interference from crystalli-
zation is less of a problem with polymers, as alluded to above, since crystallization is often slow
(or even non-existent in the case of copolymers or atactic homopolymers, which have non-
uniform repeat units). Molecular liquids have to be quenched to avoid crystallization; hence,
the term “supercooled” for amorphous liquids below their melting temperature. This facile
vitrification makes polymers well suited for the study of the glass transition, which is a major
unsolved problem of condensed-matter physics.

The glass transition is a property of polymers, along with their strength and modulus, that
is influenced by the concentration of chain ends [73–75]. If the molecular weight, M, is very
high, the concentration of chain ends is negligible and molecular weight effects are absent. The
value ofM necessary to attain this high-polymer limiting behavior depends on the material. A
general rule of thumb is that chain ends exert a measurable effect only for M below ca. 105 g/
mol. However, especially flexible chains, such as those with an oxygen atom in the backbone,
retain an insensitivity to molecular weight down to much shorter chain lengths. Note that the
high-polymer limiting behavior refers only to the effect of chain ends, but not to chain length
per se. The slow dynamics of polymers such as the viscosity and frequency range of the
rubbery plateau depend non-linearly on M, but this is a size effect and not due to any
dependence on the chain-end concentration.

There have been many attempts to model the effect of M on Tg, primarily by invoking an
addition from the chain ends to the free volume or configurational entropy. Simulations show
that the chain ends are associated with an excess volume compared to the inner chain
segments (Figure 1.12 [76]). The difficulty is that the control parameter (density, thermal

12 This timescale can be estimated as the ratio of Tg to the rate at which temperature is varied.
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energy, configurational entropy) underlying the segmental dynamics and thus Tg remains
an open question, although much progress has been made (see Chapter 2). An early effort
due to Fox and Flory [77] assumed that Tg corresponds to a state of constant free volume,
leading to an expression for the variation ofTgwith the number average molecular weight,Mn,
of linear polymers

Tg ¼ Tg;1 � kFF=Mn ð1:16Þ
where Mn is the mean

Mn ¼
R1
0 n̂ ðMÞMdMR1
0 n̂ ðM ÞdM ð1:17Þ

n̂ is the number of chains of weightM. In eqn (1.16)Tg,1 is the glass-transition temperature in
the absence of chain ends and kFF is a material constant whose value depends on the identity of
the end groups [78,79]. An empirical expression more accurate for low molecular weights is [80]

T�1
g ¼ T�1

g;1 þKUK=Mn ð1:18Þ
where the constant kUK serves the same function as kFF. This equation is seen in Figure 1.13 [81]
to describe theTg of various polystyrenes, including mixtures with linear or ring PS. Alternative
expressions not wedded to free volume ideas have been derived [82,83], but other than possibly
offering insights into the phenomenon, these have no advantage in describing experimental
Tg(Mn) data for linear polymers. Equation (1.16) has been applied to star-branched polymers
by multiplying the last term by the junction functionality [83] and to dendrimers by accounting
for the generation number [84]. An implication from studies of branched polymers is that the
concentration of chain ends governs the glass-transition temperature. However, this is at odds
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Figure 1.12 Average volume (both occupied and free) per repeat unit as a function of the position of the
bead along the polymer chain. The occupied volume of a bead equals unity. The inset shows the variation
of the average volume of an inner bead with inverse of the degree of polymerization. The line is the linear
fit. Data from ref. [76].
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with the invariance ofTg to the degree of branching for PBD 4-, 8- and 12-arm stars, in whichTg

depends only onMn [85]. It may be that in highly branched architectures the freedom conferred
by chain ends is countervailed by the constraining effect of the junction points. Other properties
are also sensitive to chain ends. For example, since chain ends are not load bearing, they reduce
the modulus and strength of a rubber network. Such properties can be described generally by an
equation having the form of eqn (1.16).13

Since Tg is defined as the temperature at which the material response (i.e. the local
segmental dynamics) becomes significantly slower than the experimental measurement rate
(Deborah number » 1), the glass transition is rate dependent. This means rapidly strained
rubber can behave as a glass; that is, the rubbery state may not persist at high strain rates. As
discussed in Chapter 2, strain-induced glass transitions in rubber underlie some applications of
elastomers. (The other phase change induced by the deformation of rubber, strain-induced
crystallization, can also be affected by strain rate; for example, strain crystallization of natural
rubber is curtailed at higher strain rates [86–88])

In addition to the static length scales referred to above, the glass transition is associated
with a dynamic length scale reflecting the heterogeneous nature of the reorientational mo-
tions. This length scale can be defined as a correlation length, or distance over which the
segmental dynamics (or reorientation of small molecules) are mutually correlated. Entropy
models of the glass transition embody a related concept, the minimum distance for segmental
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Figure 1.13 Molecular weight dependence of the glass-transition temperature of linear PS plotted in the
form of eqn (1.18) for the neat polymer, its blends with 5 and 50% by weight of low Mn (= 739 g/mol)
linear PS, and blends with 50% cyclic PS (Mn = 4.4 kg/mol). For the latter 100 kg/mol was used in
calculating Mn of the blend, since the ring structure has no chain ends. The arrow indicates the Tg

measured for this cyclic PS. Data from ref. [81].

13 Flory [73,74] proposed an equation of this form for the effect of molecular weight on the tensile strength of
rubber. Ironically, he applied the analysis to data for strain-crystallizing materials, which complicates an interpreta-
tion in terms of the chain-end concentration.
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motions to transpire without being accommodated by motion of other segments; this leads to
the idea of cooperatively rearranging regions [89,90]. The length scale of the segmental
dynamics grows as Tg is approached, becoming macroscopic in the glassy state (Section 2.3.2).
Experimental results indicate this length scale in molecular liquids and polymers to be a few
nm for temperatures not too far above Tg [91–93]. The corresponding reorientation angle is on
the order of 10 degrees [94].

1.2.5 Unentangled chain dynamics

Motions over length scales larger than the correlation length for segmental relaxation tran-
spire at longer times. Those involving only ca. 10 backbone bonds may occur as a result of, or
even simultaneously with, the local segmental dynamics; that is, the glass transition comprises
conformational transitions that permit relaxation to proceed beyond the locally relaxing
segments themselves. These longer modes are designated “sub-Rouse modes” [95,96] to
convey that the segments involved, while larger than the couple of conformers involved in
local segmental relaxation, contain fewer repeat units than the shortest of the Gaussian
submolecules described by the Rouse model. The sub-Rouse motion is not evident in measure-
ments probing only the local modes, such as most dielectric relaxation and quasi-elastic
photon and neutron-scattering spectroscopies. However, since almost all modes contribute
to the stress, the sub-Rouse dynamics can be detected in favorable cases by mechanical
experiments. To be apparent as a distinct spectral feature, however, requires that the sub-
Rouse modes are not subsumed by the intense segmental process.
Polyisobutylene has many unusual properties, including a similar temperature variation of

its segmental and Rouse dynamics [97,98], due to the weak T-dependence of the local
segmental motions (see Chapter 6). The result is that the two viscoelastic mechanisms are
widely separated in time (more so than for most polymers) in typical mechanical measure-
ments, enabling resolution of the sub-Rouse modes. This is illustrated in Figure 1.14 showing
the loss tangent (tan d, defined as the ratio of the out-of-phase and in-phase components of the
dynamic modulus) for PIB at various temperatures [99]. Note that the abscissa is actual
frequency; these are not master curves. The unusually broad, structured nature of the peak is
ascribed to the prominence of the sub-Rouse modes in PIB.
If a flexible chain has at least 20 to 50 backbone bonds, correlations between bonds are lost,

and the dynamics can be described by the Rouse model [100]. The polymer molecule
is modeled as a freely jointed chain undergoing random-flight statistics. The end-to-end
distribution function P(r) is based on the inverse Langevin function, which can be expressed
as a series expansion of the form [101]

PðrÞ � exp �nK
3
2

r
nK lK

� �2
þ 9
20

r
nK lK

� �4
þ 99
350

r
nK lK

� �6
þ . . .

" #( )
ð1:19Þ

where nK is the number of steps in the random walk and lK is the step length. For moderate
extensions this series can be truncated after the first term to give the Gaussian approximation

PðrÞ ¼ 3
2pnK l2K

� �3=2
exp � 3r2

2nK l2K

� �
ð1:20Þ
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The prefactor in eqn (1.20) results from normalization of the distribution function

Z1
0

PðrÞ4pr2dr ¼ 1 ð1:21Þ

Gaussian distributions are common because of the statistical property that the arithmetic
mean (normalized sum) calculated for any independent random variable approaches a Gauss-
ian distribution, independent of the original distribution of the variable.14 Deviations from
eqn (1.20) are small over the usual range of interest; moreover, the Gaussian approximation is
exact for hr2i, since it involves only averages (that is, the Central Limit Theorem applies). The
absence of correlations between successive steps leads to a simple relation

hr2i ¼ nK l2K ð1:22Þ
Amacromolecule, or a section of it, conforming to eqn (1.20) is called a “Gaussian chain,”with
nK the number of backbone bonds of length lK.

Of course, real chains are not freely jointed but are confined to fixed torsional angles
involving conformational states of different energy. The connection to random-flight statistics
is made by redefining nK and lK of the equivalent “Kuhn” chain in terms of the number, n, and
length, l, of actual backbone bonds. There are two equivalences: (i) the fully extended
dimension

nK lK ¼ nl sinðy=2Þ ð1:23Þ

-5
0

1

2

-3 -1 1

-66.9 �C

-74.2 �C

-52.0 �C

-35.8 �C

polyisobutylene

log (freq /rad s-1), log (strain rate /rad s-1)

L
os

s 
T
an

ge
nt

3 5

Figure 1.14 Loss tangent of polyisobutylene measured by dynamic mechanical spectroscopy and calcu-
lated from the recoverable creep compliance. Note the abscissa is actual frequency; these are not master
curves. Data from ref. [99].

14 This property, known as the Central Limit Theorem, expresses the fact that a Gaussian distribution maximizes
the entropy [102].
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where y is the bond angle (= 109.5	 for carbon–carbon single bonds), and (ii) the mean square
end-to-end distance

hr2i ¼ Cnnl2 ð1:24Þ
By definition then, lK is twice the persistence length, lp. In eqn (1.24) Cn is the characteristic
ratio, a measure of chain stiffness. This parameter increases with molecular weight to a
constant value at large n, C1. Since the glass-transition temperature also increases with
stiffness of the polymer backbone, there is a rough correlation between C1 and Tg, as
illustrated in Figure 1.15 (some of the scatter of these data [103,104] represents differences
in the measurement conditions).
The force, fe, required to maintain a deformation of the chain can be determined from the

Helmholtz energy

A ¼ E � TS ð1:25Þ
where E and S represent the internal energy and entropy, respectively. The thermodynamic
relation for an isothermal, isochoric change in chain dimension is [103]

fe ¼ @A
@r

����
T ;V

¼ dE
dr

����
V
� T

dS
dr

����
T

ð1:26Þ

Using the definition of the entropy15

S ¼ kB lnPðrÞ ð1:27Þ
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15 Equation (1.27) appears at the top of the tombstone marking Ludwig Boltzmann’s grave in Vienna, Austria.

OUP CORRECTED PROOF – FINAL, 13/5/2011, SPi

Modes of motion 21



eqn (1.20) yields

fe ¼ dE
dr

����
T ;V

þ 3kBT
hr2i r ð1:28Þ

in which r represents the distension of the chain from its equilibrium length. If the chain
configurations all have the same conformational energy, the elastic force on a chain is purely
entropic and directly proportional to the temperature

fe ¼ 3kBT
hr2i r ð1:29Þ

This force increases linearly with the end-to-end distance; thus, Gaussian chains can be
regarded as entropy springs conforming to Hooke’s law. There are two obvious deviations
for real chains: The underlying random-walk model cannot describe the finite extensibility of
polymer chains, so eqn (1.29) is limited to small or moderate strains. And conformations have
different energies, so that the internal energy of a real chain changes with conformation

(dEdr
���
T
6¼ 0), with experiments indicating this energetic contribution is typically 10–20% of

the total strain energy [101]. Further discussion of the elastic properties of chains is deferred
to Chapter 4.

In the Rouse model the motion of a chain is resisted by drag from the surroundings due to
interactions with neighboring segments. These complex interactions can be approximated by
an average friction coefficient z, which can be identified with the friction coefficient governing
local segmental relaxation. This friction deforms the chain, giving rise to a counter force
specified by eqn (1.29). Neglecting inertia (since the chain is immersed in a viscous medium
and the frequencies are not too high) the equation of motion is

z
dr
dt

þ fe ¼ 0 ð1:30Þ

The solution to eqn (1.30) has the form [100]

r ¼ r0 cos
ppn
N̂

� �
expð�t=tpÞ ð1:31Þ

where N̂ is the number of Gaussian submolecules comprising the chain. Thus, the complex
chain dynamics are decomposed into a series of independent normal modes, corresponding
to p = 1, 2, 3, . . . , with p = 0 representing center of mass motion (uniform translation). The
amplitude is r0 and the relaxation time of the pth mode is given by

tp ¼ hr2iz
12kBT sin2 pp

2n

� � ð1:32Þ

Emphasizing the dominant contribution from the longer modes (n » p), the sine is replaced by
its argument to yield

tp ¼ hr2izn2

3kBTp2p2
ð1:33Þ

Each mode conforms to eqn (1.20) with the shortest mode encompassing one Gaussian
submolecule. Equation (1.33) shows that the relaxation time of a Rouse chain varies as n2.
The diffusion coefficient obtained from the Einstein relation

OUP CORRECTED PROOF – FINAL, 13/5/2011, SPi

22 Introduction



DR ¼ kT
zchain

¼ kT
nz

� n�1 ð1:34Þ

varies inversely with chain length, since the friction coefficient for the chain, zchain, is the sum
over the entire chain of the local friction coefficient of each segment and thus proportional to
n. From this description of the motion of the submolecules, the forces on each subchain can be
summed to obtain an expression for the modulus

GðtÞ ¼ ckBT
Xn
p¼1

expð�t=tpÞ ð1:35Þ

for c chains per unit volume. This equation has the same form as the modulus expression for n
parallel Maxwell elements (a spring in series with a dashpot). However, it is important to
recognize that the form of eqn (1.35) comes from a mode analysis. Any smooth closed curve
can be represented by a Fourier sum; the Gaussian submolecules are an artifice used to deduce
the response of a chain to a perturbation. The additivity of the contributions from each mode
does not imply, for example, that different components of stress are additive in any general
way. This topic is examined in more detail in Chapter 5.
Originally, the Rouse model was derived for chains moving independently in dilute solution.

Since no assumptions are made about the nature of the solvent, Bueche [105] pointed out that
such a model can be applied to neat polymers, with neighboring segments serving the role of
the solvent. The only restriction is that the effect of the surrounding chains is limited to
influencing the magnitude of the friction coefficient, z; that is, there is no entanglement effect.
Additionally, the absence of excluded volume and hydrodynamic interactions in the Rouse
model (see Chapter 3), both of which are important for the dynamics of polymers in dilute
solution, enhances the applicability of the Rouse model to concentrated solutions and melts of
low molecular weight polymers.
The dynamic moduli corresponding to the Rouse relaxation modulus in eqn (1.35)) are

given by the Fourier transforms

G�ðoÞ ¼ o
Z 1

0
GðtÞ sinotdt ð1:36Þ

¼ ckBT
X1
p¼1

o2t2p
1þ o2t2p

ð1:37Þ

for the storage modulus and

G��ðoÞ ¼ o
Z 1

0
GðtÞ cosotdt ð1:38Þ

¼ ckBT
X1
p¼1

otp
1þ o2t2p

ð1:39Þ

for the lossmodulus.At low enough frequencies the limiting behavior Ǵ (o)�o2 and Ǵ´(o)�o
is obtained. Over an intermediate frequency range, prior to very short times where the model
breaks down, the prediction is that the modulus varies according to o1/2. The quadratic
dependence on molecular weight in eqn (1.33) is borne out approximately for the longest (p= 1)
Rouse mode by experiments on unentangled polymers (see Chapter 3). Although the model
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does not address the effect of entanglements, the Rouse description remains valid for high
molecular weight melts at times before the onset of entanglements effects. This is illustrated
in Figure 1.16 [106], wherein the o2 behavior in eqn (1.37) is observed for frequencies higher
than the entanglement plateau in measurements on a concentrated solution of high molecular
polystyrene. This power-law behavior continues well into the transition zone in this example
because the contribution from the segmental dynamics has been subtracted from the spectrum
[106]. With its basis in Gaussian chain statistics, the Rouse model applies to flexible polymers.
There are indications that stiff chains, having persistence lengths larger than the distance
between entanglements, lack Rouse motion at any timescale [107,108].

The Rouse model describes the response of an ensemble of chains. Quantities defined by
equations such as (1.20) describe a spherical probability distribution because the conforma-
tions are pre-averaged over all chain orientation. However, the shape of chain molecules (the
length, width, and depth of the chain conformation), or of Gaussian paths in general, is not
spherical. The segment distribution is more extended along one axis than the other two, giving
rise to a shape like an oval bar of soap; that is, close to prolate but with unequal minor axes
[109–111]. With increasing molecular weight, the departure of the chains from spherical
symmetry is reduced; nevertheless, the high molecular weight limiting shape is still highly
non-spherical. This asymmetry can be expressed as the ratios of the radius of gyration
measured along each of the three principle axes, which for linear chains (the most asymmetric
polymers) equal 1:1.7:3.6 [112–114]. It should be emphasized that this non-spherical segment
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distribution describes the average configuration of a chain molecule; in the absence of orien-
tation the ensemble average values are hR2

xi ¼ hR2
yi ¼ hR2

z i ¼ 1
3 hR2

gi. The elongated shape of
polymer chains influences events transpiring over timescales smaller than the terminal relax-
ation time. This is the reason why during viscous flow the stress field can orient chains without
causing their stretching.

1.2.6 Dynamics of high polymers

Most applications of polymeric materials employ high molecular weight polymers, which have
rheological properties distinctly different from unentangled chains. Given its practical impor-
tance, the flow of polymeric materials has been an area of intense research over the past half-
century. The uncrossablity of polymer chains leads to the idea of topological constraints to
explain the rheology. The effects of these constraints are brought out clearly in plots of various
dynamic properties as a function of molecular weight. However, the chains of a given material
are not all the same length, requiring the use of averages to describe the distribution of
molecular weights. These include the arithmetic mean defined in eqn (1.17), the weight
average molecular weight:

Mw ¼
R1
0 n̂ ðMÞM 2dMR1
0 n̂ ðM ÞMdM

ð1:40Þ

and the so-call z-average:

Mz ¼
R1
0 n̂ ðMÞM 3dMR1
0 n̂ ðMÞM 2dM

ð1:41Þ

Other measures of molecular weight include the peak value, Mp, which corresponds to the
maximum in the distribution, and Mn, determined from the intrinsic viscosity, [�], using the
Mark–Houwink relation [115]

½�� ¼ K̂Mâ
n ð1:42Þ

where K̂ and â are empirical, polymer-specific parameters. The size of the molecular can also
be expressed in terms of the degree of polymerization,N, which is the correspondingM divided
by the molecular weight of the repeat unit,m0. The breadth of the chain length distribution is
described by the polydispersity index

Pi ¼ Mw=Mn ð1:43Þ
This index is related to the variance, s2V , or averaged squared difference of the chain lengths
from their mean, according to

s2V ¼ ðPi � 1ÞM 2
n ð1:44Þ

The different M averages are denoted in Figure 1.17 showing the molecular weight distribu-
tion of a styrene–butadiene copolymer, polymerized using an organolithium initiator. This is
an example of an anionic “living” polymerization [116], which can yield fairly monodisperse
materials, having a molecular weight distribution approaching the Poisson distribution, for
which

Pi ¼ m0=Mn ð1:45Þ
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where m0 is the repeat unit molecular weight. Monodisperse polymers are required for
fundamental studies because of the non-linear dependence of the rheological properties on
molecular weight, as described below.

For polydisperse polymers the rheological properties are generally expected to be a function
of the weight average molecular weight [117]; thus, the zero-shear viscosity, �0, the length of
the rubbery plateau in the relaxation and storage moduli, and the terminal relaxation time, tÅ,
are assumed to be proportional to Md

w where the exponent d � 1. However, the actual
relationship is more complicated. For example, it has been found for model blends of mono-
disperse polymers that using Mw significantly overestimates the melt viscosity [118–120].

When the chains are long enough to entangle, a rubbery plateau becomes evident in the
dynamic mechanical spectra (Figure 1.1). This plateau behavior continues until the chains
have sufficient time to relax via disentanglement, with the reciprocal of the characteristic
frequency of this relaxation defining a terminal relaxation time, ��. Since lateral motions are
suppressed, the chain follows an anisotropic path along its own coarse-grained contour [121].
The Doi–Edwards tube model [122] provides a theoretical framework for this reptation
concept and, with various refinements, has become predominant in the field of polymer
rheology. The tube model has two species-dependent parameters, the Rouse friction coeffi-
cient, z, and a parameter characterizing the concentration of entanglements.

The snake-like motion of the chain is Brownian diffusion in a tube, with the equation for
Fickian diffusion

t ¼ hx2i=D ð1:46Þ
used to obtain predictions for the chain-length dependences of the terminal relaxation time
(i.e. the time for a chain to escape its tube) and the self-diffusion constant. With x (/ n)
representing the contour length of the chain and DR (/ n–1) used for the diffusion coefficient
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Figure 1.17 Molecular weight distribution measured by gel permeation chromatography for an SBR
(19.5% styrene) obtained by anionic polymerization using an organolithium initiator. The polydispersity
index = 1.03; for a Poisson distribution with this same Mn, P = 1.004. (Courtesy of Terry Hogan of the
Bridgestone Americas Center for Research and Technology.)
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(the chain dynamics inside the tube are unaffected by entanglements), the terminal relaxation
time is predicted to vary as t� � n3 � M 3

w. The zero-shear rate viscosity is the integral of the
stress relaxation modulus,

�0 ¼
Z 1

0
GðtÞdt ¼

Z 1

0
tGðtÞd lnt ð1:47Þ

so �0 has the same cubic dependence on molecular weight. The macroscopic diffusion
coefficient for entangled chains is also obtained from eqn (1.46). During a time on the
order of ��, the chain travels a distance roughly equal to its size, so hx2i (now the macro-
scopic diffusion distance not the length of the tube) is proportional to n (eqn (1.24)) and thus
Drep � n�2 � M�2

w according to the tube model.
There exists an enormous amount of experimental data allowing these tube model

predictions to be tested [123–126]. The overriding conclusion is that the actual dependence
is stronger thanpredicted for the relaxation timeandviscosity; experimentally t�� �0�n3.4–3.7,
meaning the tube model underestimates the effect of chain length on the terminal dynamics. In
Figure 1.18 viscosity data [127–130] are shown for three polymers having molecular weights
exceeding one million g/mol. Since these polymers, amorphous polyethylene (PE), PBD, and
PI, have small entanglement molecular weights,Me, these materials attain exceptional degrees
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Figure 1.18 Zero-shear rate viscosities of polyethylene [127,128], 1,4-polybutadiene [129], and 1,4-
polyisoprene [130] as a function of the number of entanglements per chain, using Me = 1.20, 1.85, and
6.19 kg/mol for PE, PBD, and PI respectively. �0 have been shifted to 25 	C using reported shift factors.
The solid line, conforming well to the data, has a slope of 3.4 and the dashed line has a slope equal to 3.0,
representing the tube-model prediction.
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of chain entanglement; nevertheless, the molecular weight dependence in all cases is signifi-
cantly stronger then M3. The variation of self-diffusion coefficients with molecular weight is
also at odds with the tube model. Experimentally Dself � n–2.2 � 0.2 (Table 1.2), rather than
a quadratic dependence.

The usual explanation for the deviations in molecular weight dependences is that other
relaxation mechanisms contribute to the entangled chain dynamics, thereby diminishing the
topological confinements. The tube itself, being composed of neighboring chains, relaxes over
the timescale of the reptation time, leading to: constraint release, movement of chain seg-
ments comprising the tube out of the path of the given chain, and contour length fluctuations,
movement of the ends of the tube. There is a belief that at very highM “pure reptation”might
be obtained as the other relaxation mechanisms become inoperative. For example, if the data
in Figure 1.18 are replotted usingM 3

w�0 as the ordinate variable, there is arguably a suggestion
of some flattening of the curve for the higher Mw, consistent with approach to a cubic power
dependence on Mw. From the experimental side it is not easy to obtain measurements
on polymers with a thousand or more entanglements per chain, since the relaxation times
are so long. If solvents are employed for sample preparation, it is difficult to ensure that
an equilibrium degree of entanglement has been attained in the material prior to testing. And
to reduce the duration of the measurements, temperatures must be used at which chemical
degradation can be significant.

Moreover, it is not clear how pure reptation can ever be achieved with homogeneous melts,
since the relaxation times of the entangled chain and of the chains comprising the tube scale
equivalently with molecular weight. However, for diffusion of probe chains dissolved in a
matrix of higherM polymer, constraint release and contour length fluctuations of the tube are
suppressed over the timescale of the probe chain motion. This implies that the diffusion
coefficient of probe chains should exhibit the expected n–2 behavior, an expectation borne
out by experimental data (Table 1.2).

1.3 Fluctuations and linear response theory

Small fluctuations of properties from their average value, arising from thermally driven
motion of the constituent molecules, are inherent to materials. These microscopic motions
allow a system to transition from a metastable state to the thermodynamically stable
one. This effect is apparent during the inflation of rubber balloons. Figure 1.19 shows the

Table 1.2 Molecular weight dependence of diffusion coefficients (D � M�U) for entangled polymers
[ref. 126 and references therein].

U

polymer self-diffusion tracer diffusion

polystyrene 2.3 �0.3 2.0 �0.1
polyethylene 2.2 �0.2 2.0 �0.1
polydimethylsiloxane 2.2 �0.2 —

polyethylene oxide 2.2 �0.2 —

1,4-polybutadiene > 2.0 —

1,4-polyisoprene — 1.9
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pressure–volume curve of a balloon (dashed line) calculated using the ideal chain model (eqn
(1.29)), which is valid only for small strains. Introducing non-linearity (see Chapter 4) into the
elastic response gives the inflation behavior observed in real balloons (solid curve). As the
volume increases there is a steep rise in pressure, followed by a decreasing P until very high
volumes are attained (this non-monotonic response is apparent when using one’s lungs to
inflate a balloon). Note that the variation of the force on the rubber with inflation volume is a
combined function of LaPlace’s law,16 the diminishing cross-sectional area, and the form of the
force–extension relation for the biaxially strained elastomer. Beyond the maximum in P, the
expansion is unstable and non-uniform.
To see the effect of equilibrium fluctuations on inflated balloons, consider the two identical

balloons in Figure 1.19, initially at the same pressure P (= 0.7 in arbitrary units) and volume
(V/V0 = 6.9) but separated by a closed tube [131]. Upon opening a valve in the connecting
tube, the pressures will remain the same and equal for the balloons; however, this pressure
balance exists for three different inflation volumes. For moderate pressures and depending on
the details of the elastic properties of the material, the balloons spontaneously transition to
smaller and larger volumes respectively (e.g., V/V0= 2.1 and 125). This behavior, depicted in
the photographs in the inset to Figure 1.19, is non-intuitive but well understood (and possible
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Figure 1.19 Pressure during isothermal inflation of a thin spherical elastomer calculated assuming
linear behavior (eqn (1.29); dashed line) and a more realistic response (eqn. (4.9) of Chapter 4;
solid line). The intersection with the horizontal dotted line denotes three possible equilibrium states
for P = 0.7. The photographs (courtesy of Peter Strehlow of the Technische Universität Berlin) depict
two identical balloons inflated to the same pressure. (a) Initially their volumes are equal. (b) After
opening a valve to allow interchange of the contained air, there is a spontaneous change to unequal
volumes, with the final pressure unchanged.

16 According to LaPlace’s law, the surface tension in the balloon at fixed inflation pressure is proportional to its
radius of curvature.
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only for inflation strains sufficient for deviations from eqn (1.29) [132,133]). The question is,
how did the balloon ending at the lower V/V0= 2.1 in Figure 19 traverse the intermediate
volumes associated with higher pressures? The answer is by fluctuations in the pressure.
Analogous to chemical reactants overcoming an activation barrier to form lower-energy
products, the final inflation conditions of the two balloons can be achieved because of random
fluctuations inherent to an equilibrium system.

The same fluctuations prevailing at equilibrium enable a material to return to equilibrium
following a small external perturbation. Fluctuation-dissipation theory (FDT) relates the
fluctuations to how the system responds to (dissipates) external forces. According to FDT, if
the material is driven not too far from equilibrium, it is sufficient to know the behavior of the
dissipating and perturbing systems in the absence of any coupling in order to predict their
interaction; that is, decay of a spontaneous thermal fluctuation cannot be distinguished from
decay of fluctuations induced by small external forces. The fluctuating properties can be
described through time correlation functions, defined as

CðtÞ ¼ hAð0Þ�BðtÞi ð1:48Þ
where A(t) and B(t) are microscopic quantities whose values depend on the coordinates and
momenta of the constituent molecules. An autocorrelation function quantifies the correlation
of a property with its own prior value

CðtÞ ¼ hAð0Þ�AðtÞi ð1:49Þ
The ensemble average varies over time due to the stochastic fluctuations. Since the system is
stationary at equilibrium, average quantities are time independent and the initial time is
artificial; that is, hAð0ÞAðtÞi ¼ hAðuÞAðt þ uÞi and hAð0Þ½dAðtÞ=dt�i ¼ dhAðuÞAðt þ uÞidt,
with t specifying the duration between successive evaluations of A. For an ergodic system
this average over the system is equivalent to the time average

CðtÞ ¼ lim
t̂!1

t̂�1
Z t̂

0
AðuÞAðt þ uÞdu ð1:50Þ

Normalization of A(t) by its initial value, hA2i, and subtraction of the long-time asymptotic,
uncorrelated value, hAi2, makes C(t) equal unity initially and zero eventually. C(t) is calcu-
lated by solving the equations of motion describing the coordinates and momenta over time,
and averaging over all phase space. A model with suitable assumptions is used to simplify this
general N-body problem.

FDT connects the fluctuations described by C(t) to a susceptibility characterizing fluctua-
tions induced experimentally (the latter more accessible than spontaneous fluctuations). The
initial statement of FDT was the Nyquist theorem [134] describing Johnson electrical noise
[135]. This is the white noise in a conductor due to thermal motion of the electrons, manifested
as voltage fluctuations having a mean square potential proportional to the resistance.
The resistance, or impedance, is the response measured when an external voltage is applied.
More generally experiments yield a susceptibility function describing the change of an observ-
able induced by an infinitesimal perturbation &

wðtÞ ¼ lim
&!0

hAðtÞizhAi0
&

ð1:51Þ
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According to FDT w(t) is related to C(t) as [136,137],

wðtÞ ¼ CðtÞ
kBT

ð1:52Þ

The temperature factor accounts for the fact that fluctuations are thermally driven. The
Fourier transform of C(t) yields the spectral density and therefore the dynamic susceptibility,
w(o). An example of the FDT is the Einstein relation, eqn (1.34), relating the Brownian
motion of particles to viscous dissipation. A(t) and B(t) in eqns (1.48) and (1.49) depend of
course on the nature of the experiment. In a transient mechanical experiment, A represents
the local stress and the stress relaxation modulus is

GðtÞ ¼ V
kBT

CðtÞ ð1:53Þ

In a dielectric experiment the time-dependent fluctuations of the polarization are measured
and A(t) is identified with electric dipoles on the molecules or segments. In most polymers this
dipole moment is oriented transverse to the chain, so that the dielectric experiment probes the
local segmental dynamics. For those few polymers having a dipole moment parallel to the
backbone (which means their repeat unit structure lacks a symmetric center), dielectric
relaxation measures the autocorrelation of the chain’s end-to-end vector. Note that although
the dipoles orient in the presence of the applied field, the interaction energy is much less than
the available thermal energy; this is a characteristic of the linear response regime.
Quasi-elastic scattering techniques can be used to probe fluctuations of the polarizability

(light scattering), density (X-rays), and nuclei (neutrons) of the molecules, where in favorable
cases the motion can be identified with a particular axis or moiety in the molecule. The
scattered intensity varies with the wave vector, q = 4p

l sinðy=2Þ, where y is the scattering
angle and l the wavelength. This angle dependence of the intensity means that scattering
experiments yield information about the variation of the molecular motions with length
scale, information not available from mechanical or dielectric relaxation spectroscopies. The
characteristic length scales must be on the order of the wavelength, which distinguishes light,
X-ray, and neutron measurements. Scattering experiments are able to probe correlations
between different particles. For example, the intermediate scattering function, F(q,t),
measured by quasi-elastic X-ray and neutron experiments, is related to the correlation
function according to

Cðr; tÞ ¼ Csðr; tÞ þ Ccðr; tÞ ¼ 1
8p3

Z
expðiqrÞFðq; tÞdq ð1:54Þ

in which Cs(r,t) and Cc(r,t) described the self- and cross-correlations respectively. Other
examples of experimentally accessible correlation functions are for nuclear magnetic dipoles,
probed by NMR measurements, and chromophores attached to polymers chains, responsible
for fluorescence decay and holographic grating techniques.
Two restrictions in the application of FDT are that the perturbed system begins in a state

of equilibrium and that the external perturbation does not drive the material beyond values of
A(t) attainable by equilibrium fluctuations. The latter is the linear response requirement that
determines the amplitude limit for the perturbation. For an initially non-equilibrium system
the correlation and response functions deviate from FDT; nevertheless, the theory can still be
useful. For example, in some situations the departure from equilibrium can be quantified by
defining an effective temperature in analogy with eqn (1.52) [138–140]
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Tf ¼ k�1
B

CðtÞ
wðtÞ

� �
ð1:55Þ

The quantity in brackets is called the fluctuation-dissipation ratio, which approaches
unity close to equilibrium. Tf is the temperature at which the observed non-equilibrium
properties would have their equilibrium values. For glasses, which are prototypical non-
equilibrium materials, Tf is known as the fictive temperature. During physical aging
of a glass, the structure moves towards equilibrium and thus Tf approaches the actual
temperature.

From the measured susceptibility FDT enables the relevant time correlation function to be
obtained. Its interpretation, however, relies on computation of C(t) from a model of the
dynamic process probed by the experiment. For the case of reorientational motions, Debye
[2] proposed a simple model wherein the liquid molecules change orientation through a series
of small angular jumps due to unbalanced torques from the fluctuating surroundings (random
“collisions”). The motion is thus a random walk in angular coordinate space, with the time
between changes in orientation long compared to the time of a reorientation; i.e. the rotational
correlation time is much longer than the correlation time for the angular momentum. Motion
of this nature can be described by a diffusion equation whose solution is exponential decay (i.e.
the form of a first-order rate equation such as eqn (1.4)). This in turn is the form FDT predicts
for the experimental relaxation function. However, there are two obvious cases where the
assumptions underlying the Debye model break down. If unbalanced forces are sparse and
infrequent, large changes in orientation can occur by free rotation (inertially driven) inter-
rupted by periodic perturbations; such motion cannot be described as a random walk. This
situation prevails in low-density fluids, with the relevant C(t) depending on the effect assumed
for the perturbations. For example, intermolecular collisions may randomize the instanta-
neous orientation of the molecule or scramble its angular momentum. This type of motion is
not relevant to polymers.

With increasing density in supercooled liquids and polymers, there is a crossover from
continuous small-amplitude Brownian motion to discontinuous, large-amplitude hopping as
movements become highly correlated – a given segment’s change in position or orientation
requires motion of its neighbors. The Debye model’s mean-field description of a fluctuating
environment is inadequate, and measured correlation functions deviate from simple exponen-
tial decay. Relaxation in such complex correlated systems often conforms to the Kohlrausch
equation (eqn (1.7)). Although it is used as an empirical fitting function, this form can be
arrived at in various ways: from models based on free volume [141], hierarchal constraints
[142], defect diffusion [143], defect distances [144], random free energy [145], or molecular
weight polydispersity [146]; by employing a particular distribution of exponential decay
functions [147]; or from specific ideas about cooperativity [148,149]. One approach is to
assume that many-body interactions modify the rate constant k in eqn (1.3) during the course
of the relaxation according to [148]

kðtÞ ¼ k0ðt=t0Þ�1=b ð1:56Þ
in which t0 is a constant. When substituted into eqn (1.3), eqn (1.56) gives stretched
exponential decay. When many-body interactions cause the relaxation to deviate from eqn
(1.4), the temperature dependence usually exhibits a corresponding deviation from Arrhenius
behavior (eqn (1.12)). A spectacular increase in the temperature sensitivity of the dynamics is
one of the hallmarks of vitrifying liquids and polymers, prototypical of systems with
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correlated, multi-body interactions. Understanding the connection between the time and
temperature dependences of the dynamics is a major theoretical challenge.
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